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Burkitt lymphoma (BL) is an aggressive B-cell malignancy with
endemic, sporadic and immunodeficiency-associated variants.
It has been known for many years that the fundamental
transforming event in BL is the translocation of the MYC gene,
and the events that bring about this translocation and those that
allow cells to survive with the constitutive expression of MYC
have been the subject of intense investigation. Epstein–Barr
virus (EBV) infection, malaria, immunodeficiency and
spontaneous, somatic mutation can all contribute to the origin
and maintenance of this cancer and their mechanisms are the
subject of this review.
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B
urkitt lymphoma (BL) can be classified into
three forms which differ in geographic distribu-
tion and Epstein–Barr virus (EBV) association:

endemic (eBL), sporadic (sBL) and HIV-associated
BL (table 1). The hallmark of all BL tumours is the
translocation between the MYC gene and one of the
immunoglobulin (Ig) heavy or light chain loci. There
is a low background incidence of BL worldwide
(sBL), which is rarely associated with EBV and
accounts for 1–2% of adult lymphoma in Western
Europe and America, but eBL is associated with
(EBV) in over 95% of cases and is predominant in the
equatorial belt of Africa and other parts of the world
where malaria is hyperendemic.1–4 BLs that display
an intermediate association with EBV have also been
documented in Egypt and Brazil, where up to 87% of
tumours are EBV positive5–7 and BL occurs in HIV
carriers, where tumours can develop prior to the
severe immunosuppression coincident with the
onset of AIDS. Approximately 30% of such AIDS-
associated tumours are EBV-positive.8 9

Endemic EBV-associated BL has an incidence of
5–10/100 000 children and accounts for up to 74%
of childhood malignancies in the African equator-
ial belt.3 In contrast to sBL, which most frequently
involves tumours of the abdomen,4 eBL often
presents in the jaw or kidneys10 11 but may also
occur in the abdomen, ovaries, facial bones and
other extranodal sites.1 The cancer has one of the
highest cell proliferation rates of any human
tumour (doubling time of tumour 24–48 h).12

Histologically, BL cells are monomorphic medium
sized cells with round nuclei, a number of nucleoli
and abundant cytoplasm. Tumours display a ‘‘starry
sky’’ pattern owing to the presence of high numbers
of macrophages, which phagocytose apoptotic deb-
ris.1 BL tumour cells usually express IgM,13–15 B-cell
markers such as CD19, CD20 and CD22 and markers
of germinal centre (GC) centroblasts such as CD10,
BCL64 and the human germinal centre-associated
lymphoma (HGAL) protein.16

It remains to be firmly established whether eBL
originates from a GC-derived or memory B cell.17–22

The cell surface phenotype of BL tumour cells
reflects a GC origin but the site of tumour growth
is frequently the jaw or ovary, neither of which
normally contain GCs. However, the tumour cells
have undergone hypermutation,21 23 a feature of
the GC reaction during B-cell activation and
differentiation. Moreover, the breakpoint in the
Ig gene to which MYC is transferred in eBL occurs
at the V(D)J region, suggesting that translocation
occurs during V(D)J recombination. The J seg-
ments flanking MYC translocated breakpoints
typically exhibit deletions and/or additions of base
pairs characteristic of normal Ig V(D)J segment
rearrangement.24 25 This is a process catalysed by B-
cell specific V(D)J recombinase activating enzymes
RAG-1/2 which are expressed in both pre-B cells
and GC B cells.26 27 In contrast, the chromosomal
breakpoint in sBL and HIV-associated BL occurs
most commonly in the class switch region,28 but
since both somatic hypermutation and class
switching are events that are normally confined
to GC B cells and GC centroblast markers are
expressed on BL cells, the BL progenitor cells most
likely arise from B cells subjected to chromosomal
rearrangements in the GC.

There is some evidence that the cell of origin
may be a post-GC or memory B cell re-entering the
GC18 22 and may differ in EBV-positive and
negative tumours,18 but whichever is the cell of
origin, it is clear that GC involvement is critical to
the pathogenesis of this disease both in terms of
MYC translocation events and the contribution of
co-factors such as EBV, malaria or HIV infection.
For example, malaria and HIV infection have both
been reported to activate B cells.29–32 The greater the
number of B cells activated and entering the GC
reaction the greater the possibility that one cell
may subsequently accumulate oncogenic muta-
tions. Interestingly, the C1DR1a motif of the
malarial parasite has been shown to drive B-cell
proliferation and protect B cells from apoptosis.32

Furthermore, HIV has been shown to induce the
production of cytokines such as interleukin (IL)-6
and IL-10 that drive the proliferation of B cells.33–36

The combination of malaria-mediated activation
and enhanced survival of B cells plus EBV-driven
proliferation of GC B cells may therefore help MYC/
Ig translocation-positive B cells to survive, giving
rise to a BL progenitor cell (fig 1).

THE ROLE OF MYC TRANSLOCATIONS IN
BL PATHOGENESIS
A defining feature of BL is the reciprocal translo-
cation between the MYC gene and one of the three
immunoglobulin genes: the immunoglobulin
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heavy chain gene (IgH, IGH), and the kappa (IGK) or lambda
light chain (IGL) genes. In 80% of cases the t(8;14) transloca-
tion occurs with the IGH gene. The remaining 20% of cases are
split between the translocations with the IGK and IGL (t(2;8)
and t(8;22) respectively). Although MYC translocation can also
occur in other human cancers such as diffuse large B-cell
lymphoma37 and multiple myeloma,38 it is not thought to be the
primary transforming event in these diseases.39 40 Transgenic
insertion of MYC into the IgH site resulted in B-cell and plasma
cell neoplasms in mice.41–43 Similar translocations have also
been observed in the spontaneous cancers murine plasmacy-
toma and rat immunocytoma, with a predominance of IGH
translocations in both cases.44 45

The MYC proto-oncogene plays a critical role in regulating cell
proliferation, differentiation and apoptosis in a cell-type or
context-dependent manner.46 Its sequence and activities are
widely conserved in evolution.47–49 The transforming activity of
MYC involves its activity as a sequence-specific transcriptional
activator. Its C-terminal basic helix–loop–helix zipper domain
facilitates binding to DNA sequences with the core consensus
CACGTG (‘‘E-boxes’’),50 requiring the association of its hetero-
dimeric partner, Max.51 MYC possesses an N-terminal transac-
tivation domain through which it drives the expression of a
large array of target genes,52 53 the mutation of which results in
loss of its activity as an oncogene.

The MYC gene comprises three exons. Exon 1 is non-coding
but there are two promoters and regulatory sequences. Exons 2
and 3 contain the protein-coding sequence beginning on
nucleotide 16 of exon 2.54 Most MYC expression occurs from
the P2 promoter (80–90% total MYC mRNA),55 but MYC has a
complex transcriptional and post-transcriptional regulation
which acts to strictly limit the levels of MYC in the cell. It
has a short-half life and is degraded by ubiquitin-mediated
proteolysis driven first by phosphorylation of serine-62 followed
by threonine-58, both modifications being activated by the Ras/
MAP kinase/Akt pathways.56 57

The breakpoints in the translocated MYC gene occur at
different positions in the different forms of BL. In sBL
breakpoints are usually within exon 1 or intron 1, whereas
the breakpoint in eBL is often at a great distance from the
transcriptional start site.58 These differences likely reflect
distinct mechanisms of pathogenesis and the differentiation
state of target cells in the development of sBL and eBL.
However, in both cases, the coding region of the MYC gene is
transferred intact. The breakpoint in the immunoglobulin gene
to which MYC is transferred also differs in these two forms of
BL.

Expression of MYC is normally under tight regulation during
the cell cycle but once translocation occurs, expression is
constitutive and deregulated, often reaching levels higher than
in activated or EBV-infected B cells. The immunoglobulin
enhancers at the adoptive locus appear to be the major
deregulating factor on MYC expression, but the locations of
breakpoints within MYC have also been correlated with
expression levels of the gene product,59 and MYC promoter
elements can continue to modulate expression from the new
site.60–62 Transcription of translocated MYC occurs preferentially
from the P1 promoter,63 64 a shift driven by the immunoglobulin
enhancers. The normal MYC allele is typically silent in BL,65–67 so
expression of MYC in these cells is derived solely from the
deregulated allele.

Translocation of MYC and the immunoglobulin loci is
believed to be aided by the presence of recombination switch
sequences in MYC .68 69 Interestingly, higher-order, spatial
organization of B-cell DNA during interphase puts MYC and
the immunoglobulin loci in close proximity, perhaps favouring
reciprocal translocations.70 Double, independent MYC transloca-
tions have been observed in murine plasmacytoma to both the
IGH and IGK or IGL loci, further suggesting a non-random,
reproducible mechanism for MYC transfer.71 72

Genetic translocation is not the only means of MYC
deregulation. Mutations which increase the expression, activity
and stability of MYC have also been reported.73 74 These
mutations are likely to occur after translocation of MYC to the
Ig region where somatic hypermutation occurs in germinal
centre B cells. Several mutations have been found in the
regulatory regions of exon/intron 1 which block negative
regulation of MYC expression.75 Mutations in the MYC coding
region have also been reported. For example, a commonly
occurring mutation in threonine 58 prevents proteolytic
degradation of MYC, thereby increasing turnover time of the
protein in BL cells.76

ROLE OF OTHER GENETIC CHANGES IN SURVIVAL OF
BL TUMOUR CELLS
A key aspect of MYC function in BL cells is the phenomenon of
MYC-induced apoptosis. While MYC potently drives S phase
progression in most somatic cells, cells normally undergo
apoptosis when MYC levels exceed a ‘‘safe’’ threshold.77 Over-
expression of MYC in B cells causes induction of p53 or ARF,
resulting in apoptosis.78 79 In mouse cells a product of the
CDKN2A (INK4a-ARF) locus, p19ARF80 stabilises p53 by associat-
ing with and antagonising MDM2,81–83 a key negative regulator
of p53.84 High levels of MYC drive apoptosis by inducing p19ARF

expression, resulting in an increase in apoptotic p53.85 In
human cells the equivalent (slightly smaller) ARF protein is
p14ARF.

Additional changes are therefore selected during the devel-
opment of BL to counteract this apoptotic effect. The threonine
58 mutation mentioned above also blocks the ability of MYC to
induce the expression of the apoptotic BCL-2 family member
BIM. BIM interacts with the anti-apoptotic protein BCL-2,
inhibiting its function and appears to be an important regulator

 

Figure 1 Pathogenesis of Burkitt lymphoma.
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of apoptosis in these cells.86 Mutations of the T58 site and
related amino acids that prevent the phosphorylation of this
residue represent an important means by which BL cells retain
MYC-driven proliferation yet evade its apoptotic effects,87 but
the exact mechanism by which MYC activates BIM has yet to be
described. Recent data shows that EBV-infected lines express
lower levels of BIM than parental lines, suggesting that a latent
EBV product blocks apoptosis by down-regulating the expres-
sion of BIM.88 89

Another means of evading MYC-driven apoptosis is by
mutation of TP53, the gene encoding p53. It has long been
known that cells lacking p53 and ARF activity are resistant to
MYC-driven apoptosis.90 91 Up to one third of BLs have acquired
inactivating TP53 mutations92 93 and most BL cell lines have
alterations in some part of the p53/ARF/MDM2 pathway.94

Recently, the anti-apoptotic kinase, PIM-1, was reported to be
hyperactive in Burkitt lymphoma, causing increased MDM2
levels in these cells, resulting in the destabilisation of p53.95

Restoration of p53 activity in BL cell lines results in a decrease
in tumourigenicity.78 Interestingly, BL cells with inactivating
TP53 mutations appear to be devoid of MYC mutations.87 These
data suggest that once inactivating TP53 mutations have
occurred, there is no longer a requirement for further lesions
in MYC to block apoptosis.

Mutations that disrupt the nuclear localisation signal of the
RB-related gene, RBL2 (RB2/p130) have also been reported in
eBL, correlating with high levels of proliferation.96 97 It was
suggested that alterations in p130 may drive proliferation prior
to translocation of the MYC gene.

ROLE OF EBV IN BL CELL SURVIVAL
The presence of EBV in GC cells that undergo a MYC
translocation is also likely to aid cell survival. EBV is a
ubiquitous gamma herpesvirus that establishes a seemingly
harmless latent infection in B cells in over 95% of the human
population, but is also involved in several types of cancer. The
identification of clonal EBV genomes in all cells of tumours98

indicates that the progenitor tumour cell was infected with EBV
and supports the notion that the virus plays a role at an early
stage of tumourigenesis. Moreover, antibodies to the EBV viral
capsid antigen (VCA) are raised months or years prior to the
development of disease and can correlate with disease burden.99

EBV can display three patterns of latent gene expression:
latency I (latency programme), II (default programme) and III
(growth programme). Latency III is characterised by expression
of all the latent genes (EBNAs, LMPs and EBERS) and occurs
on primary infection of B cells, where EBV clearly drives cell
proliferation. In contrast, persistent infection in vivo is
characterised by expression of EBNA-1 and LMP-2 plus the
EBER RNAs.100 eBL cells usually express only the EBNA-1
protein plus the EBERs (latency I), giving rise to debate as to

how EBV may directly contribute to tumour growth. One report
also detected LMP2A RNA.101

The restricted EBV latent gene expression profile102 and
reduced expression of MHC class I, transporter associated with
antigen processing (TAP) molecules and the proteasome
subunit LMP7 in tumour cells103–105 help tumour cells to evade
immune surveillance, but EBV gene products also seem to
directly aid cell survival in the BL cells. Thus spontaneous loss
of the EBV genome during passage of EBV-positive BL lines in
vitro increases their sensitivity to apoptosis. Three per cent of
EBV replicons are lost per cell per generation if they do not
provide a survival advantage, yet expression of both EBNA-1
and EBERs is maintained in BL cells.106

In fact, roles for both EBNA-1 and the EBERs in the
prevention of apoptosis and survival of BL cells have been
reported. Early studies on transgenic mice expressing EBNA-1
in B cells suggested a predisposition to develop B cell
tumours,107 and experiments performed using a dominant
negative EBNA-1 expressed from retroviral vectors demon-
strated that inhibition of EBNA-1 reduced the survival of EBV-
positive but not EBV-negative tumour cells in a dose-dependent
manner. Cells in which EBNA-1 was inhibited displayed a four-
fold increase in the level of apoptosis prior to loss of the EBV
genome or changes in the level of the EBERs.108

In EBV-negative Akata BL cell the EBERs enhanced
tumourigenicity and resistance to apoptosis,109–111 increasing
the growth of tumour cells in soft agar and significantly
enhancing the tumourigenicity of EBV-negative BL cells in
SCID mice.110 111 EBERs (or EBER1 alone) have also been
reported to bind to and inhibit the dsRNA-activated protein
kinase, PKR112–116 and consequently inhibit IFN-a induced
apoptosis.114 PKR regulates cellular stress and apoptotic path-
ways, but its reported role as a tumour suppressor led to
suggestions that inhibition of its function by EBERs may play a
role in tumourigenesis. The direct role of EBER-mediated PKR
inhibition in mediating IFNa-induced apoptosis resistance has
since been challenged,111 casting doubt over a potential role for
PKR in BL development under these conditions. Interestingly,
EBERs have also been reported to be responsible for increased
production of the B-cell growth factor, IL-10, in EBV-positive
BL lines compared to EBV-negative BL lines.117 IL-10 was
shown to be present at higher levels in the tumour micro-
environment of EBV-positive BL compared to EBV negative
BL.117 118 The recently discovered microRNAs in EBV do not
appear to be expressed at high levels in BL cells,119 but seem
likely to be important in some other EBV-associated diseases
such as nasopharyngeal carcinoma.

While EBNA-1 and the EBERs are generally thought to be the
only EBV genes expressed in eBL, recent studies have found
that a minor proportion of eBL tumours has a novel form of
latency in which the EBNA-3A, 3B, 3C and LP latent genes are
expressed in the absence of EBNA-2 and LMP-1 or 2.103 These

Table 1 Characteristic features of the different Burkitt lymphoma subtypes

Endemic Sporadic HIV-associated

Distribution Equatorial belt of Africa and Papua New Guinea Worldwide Worldwide
EBV association 98% 5210% 30240%
Co-factors EBV, malaria infection – HIV infection
Incidence 5–10/100 000 0.01/100 000 Variable
MYC breakpoint Often .1 kb upstream from 1st coding exon Exon 1/intron 1 of MYC gene Exon 1/intron 1 of MYC gene
Ig breakpoint Joining (J) region, switch (S)m in some cases Sm, Sa or J region Sm region
Progenitor cell GC, late GC or memory B cell GC B cell GC, late GC or memory B cell
Frequent site of occurrence Most frequently jaw. Abdomen, kidneys and ovaries

may also be involved
Most frequently abdomen. Kidneys,
bone marrow and ovaries may also be
involved

Lymph nodes, abdomen, bone marrow,
CNS

Epstein–Barr virus and Burkitt lymphoma 1399
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tumours contain deletion mutants of EBV lacking the EBNA2
gene and this has led to the idea that EBNA2 is incompatible
with the de-regulated MYC expression in BL cells, suggesting a
selective pressure for loss of EBNA-2 expression (either latency
I or deletion of EBNA2). Further investigation has demon-
strated that eBL tumours may be comprised of tumour cells
expressing variable patterns of EBV gene expression, each of
which confer a different level of resistance to apoptosis.120 In
addition to the EBNA-2-deleted virus, EBNA-2+ LMP-12 clones
and the previously described EBNA-1 only clones were
identified. This finding supports early immunohistochemical
studies in which the latent genes LMP-1 and EBNA-2 were
identified in a proportion of eBL tumour cells.121 Thus, EBNA-1,
3A, 3B, 3C and LP positive EBNA-2, LMP negative BL cells were
the most resistant to apoptosis, while EBNA-2+, LMP1-negative
BL cells displayed reduced but ‘‘intermediate’’ resistance.
Latency I BL cells displayed the least resistance to apoptosis
but afforded some level of protection compared to EBV-
negative BL cells. Reports of eBL cases in Malawi in which
EBNA-1, LMP1, LMP-2A, BZLF-1, EBERs and the BARTs were
identified122 suggest that EBV gene expression may be broader
than previously thought, but these occasional exceptions can be
seen as typical tumour heterogeneity and should not detract
from our understanding of the usual EBNA1 and EBER only
pattern of EBV gene expression in BL.

MALARIA AS A BL COFACTOR
The role of malarial infection in the pathogenesis of eBL is clear
for the geographical co-incidence of the two diseases. It is
generally thought that the association between malaria and BL
arises from a combination of immunosuppression and B-cell
activation. For example, cytotoxic T-cell mediated control over
the outgrowth EBV-infected B cells is impaired during acute
malaria infection,1232125 and it has been found that peripheral
EBV loads may be five times higher during acute malaria
compared to levels observed during convalescence or in healthy
individuals.126 EBV loads are generally higher in areas of
holoendemic malaria compared to areas where malaria is
sporadic,127 and show increased persistence in children with a
history of severe rather than mild malaria,128 possibly owing to
higher viral reactivation.129 eBL also develops at a later age in
individuals who have migrated from malaria-free high altitude
areas to lower, malaria-endemic areas.130

In support of these findings, it has recently been found that
the malarial parasite Plasmodium falciparum can directly activate
B cells via a cysteine-rich interdomain region 1a (C1DR1a) on
the P falciparum erythrocyte membrane protein 1 (PfEMP1),
which binds to surface Ig. The activation of B cells by C1DR1a
and subsequent protection from apoptosis has been postulated
to play a role in enhancing survival of GC B cells bearing
oncogenic mutations.32 In addition to the activation of B cells, it
is possible that proliferation of B cells is enhanced by IL-10.
Serum levels of this cytokine are raised in children suffering
from acute P falciparum malaria compared to healthy controls.131

Protective immunity is only acquired following several years
of exposure to the malarial parasite P falciparum,132 and the
intervening immunosuppression in malaria endemic areas may
alter the regulation of EBV-positive B cells.8 133

Immunosuppression is probably part of the mechanism of
HIV-associated BL, but this can develop prior to the severe loss
of immunity characteristic of AIDS, suggesting that severe
immunosuppression is not a prerequisite for BL development.
Additionally, EBV-associated tumours in post-transplant
patients, in whom immunosuppression is severe, tend to
display a latency III type EBV gene expression profile rather
than the restricted pattern frequently seen in eBL patients. In
addition to the influence of malaria in stimulating B-cell

expansion, the possibility that mosquito-borne arboviruses are
another risk factor for eBL has recently been raised.3

CONCLUSION
While BL is undoubtedly a disease of MYC translocation, there
are many other pathological factors which occur around this
key event. These factors conspire to increase the probability of
translocation or to stabilise the hyperproliferative, yet apoptotic
phenotype that results from its overexpression. The patterns
with which they occur clearly differ between the immunologi-
cally and geographically distinct forms of BL and are frequently
indicative of the events leading to their respective pathogenesis.
There are many roles that EBV can play in both the formation
and maintenance of this disease and current research is actively
exploring these mechanisms.
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